下载贤集网APP入驻自媒体
近年来,大数据、互联网和人工智能的快速发展,对数据处理的速度和效率提出了更高的要求。人类大脑是最复杂的计算系统之一,可以通过密集协调的突触和神经元网络同时存储、整合和处理大量的数据信息,兼具高速和低功耗的优势。 近日,中国科学院苏州纳米技术与纳米仿生研究所陆书龙团队在前期纳米柱相关工作的基础上,研发了基于GaN基纳米柱/石墨烯异质结的人工突触器件。实验证明,在光刺激下该器件能够有效模拟神经突触特性,包括记忆特性、动态的“学习-遗忘”特性和光强依赖特性,可实现从短期记忆(STM)到长期记忆特性(LTM)的转变(图1)。相关成果以Realize low-power artificial photonic synapse based on (Al,Ga)N nanowire/graphene heterojunction for neuromorphic computing为题,发表在《应用物理快报-光子学》(APL Photonics)上。