回复仪表产业观察:该人工智能光学检测方法作为强大的数据驱动工具,显著提高了表征效率和识别准确率
下载贤集网APP入驻自媒体
近期,中国科学院上海光学精密机械研究所空天激光技术与系统部王俊研究员团队,在过渡金属硫化物单晶样品的智能检测与识别方面取得进展,相关论文以“Identification of triangular single crystals of transition metal dichalcogenides based on the detection algorithm”为题发表于Optics Letters。 研究团队提出了一种级联数字图像处理和深度学习算法的检测模型,旨在区分和表征四种常见过渡金属硫化物的三角单晶样品,包括对MoS2、MoSe2、WS2和WSe2的定位和识别。研究人员分别在卤素灯和470 nm LED光源的照明条件下,拍摄了在蓝宝石衬底上通过化学气相沉积制备的四种样品的光学图像,建立了两类不同成像条件下的训练集。