下载贤集网APP入驻自媒体
药物发现的可能性是无穷无尽的,然而,药物发现过程中的高损耗率是生物医学科学中面临的一个首要问题。据估计,截至2020年,美国FDA批准的每种药物的开发成本平均高达13亿美元。 近年来,计算机辅助药物设计(CADD)已成为药物研发的重要领域,它可以进行候选分子的初始筛选,并进行进一步优化。而其在最初阶段发现的良好线索对药物发现过程至关重要。但CADD面临着三个主要问题:首先,所需的算力成本很高;其次,一款药物能否成功上市不仅仅基于治疗其预期疾病的效果,90%的药物无法通过临床试验,药物的许多特性,例如ADMET(吸收、分配、代谢、排泄、毒性),药物-药物相互作用(DDI)和副作用在很大程度上影响药物的成功;第三,当前的CADD技术通常涉及使用许多专用模型,每个模型预测一个特定的化学性质,当许多模型堆叠时,所需的算力成本呈指数级增长。 近日,南洋理工大学慕宇光教授、智峪生科郑良振博士和山东大学李伟峰教授等在 Nature 子刊 Nature Machine Intelligence 上发表了题为:Application of variational graph encoders as an effective generalist algorithm in computer-aided drug design 的研究论文。 该研究提出了一个单一、通用的统一模型,利用图卷积变分编码器,可以同时预测小分子药物的多种特性,例如吸收、分配、代谢、排泄和毒性,以及靶点特异性对接评分预测和药物-药物相互作用。使用这种模型可以实现目前最先进的虚拟筛选,具有高达两个数量级的加速优势。变分图编码器的隐空间最小化,还能与Pareto最优原则结合,加速特定药物的开发,并具有可解释性的额外优势。