回复医者仁:RFdiffusion是对目前蛋白质设计方法的一次综合改进,能产生总长度达600个残基的结构,复杂性和准确度都比之前更高。进一步改进该方法或能设计出复杂程度更高的新蛋白。
下载贤集网APP入驻自媒体
美国科学家开发了一种能设计新蛋白质的深度学习方法,名为RoseTTAFold Diffusion(RFdiffusion)。该方法能生成各种功能性蛋白质,包括在天然蛋白质中从未见过的拓扑结构。 通过细调之前报道过的RoseTTAFold的结构预测网络并将其整合到一个降噪扩散模型中,就能生成具有实际意义的蛋白质骨架,而蛋白质骨架决定了蛋白质的形状和功能。该模型(RFdiffusion)能测试拥有不同结构元素的设计组合,并从头开始产生蛋白质。RFdiffusion能执行不同的任务,设计单体(蛋白质的基本组成单位)、寡聚体(多亚基聚体)和有治疗或工业应用前景的复杂结构,如结合位点。